[This is a technical analysis of climate models vs observations by an econometrician who helped show that Michael Mann’s “Hockey Stick” was false. –Bob]
By Ross McKitrick – Re-Blogged From WUWT
Challenging the claim that a large set of climate model runs published since 1970’s are consistent with observations for the right reasons.
Introduction
Zeke Hausfather et al. (2019) (herein ZH19) examined a large set of climate model runs published since the 1970s and claimed they were consistent with observations, once errors in the emission projections are considered. It is an interesting and valuable paper and has received a lot of press attention. In this post, I will explain what the authors did and then discuss a couple of issues arising, beginning with IPCC over-estimation of CO2 emissions, a literature to which Hausfather et al. make a striking contribution. I will then present a critique of some aspects of their regression analyses. I find that they have not specified their main regression correctly, and this undermines some of their conclusions. Using a more valid regression model helps explain why their findings aren’t inconsistent with Lewis and Curry (2018) which did show models to be inconsistent with observations.
Outline of the ZH19 Analysis:
A climate model projection can be factored into two parts: the implied (transient) climate sensitivity (to increased forcing) over the projection period and the projected increase in forcing. The first derives from the model’s Equilibrium Climate Sensitivity (ECS) and the ocean heat uptake rate. It will be approximately equal to the model’s transient climate response (TCR), although the discussion in ZH19 is for a shorter period than the 70 years used for TCR computation. The second comes from a submodel that takes annual GHG emissions and other anthropogenic factors as inputs, generates implied CO2 and other GHG concentrations, then converts them into forcings, expressed in Watts per square meter. The emission forecasts are based on socioeconomic projections and are therefore external to the climate model.
Continue reading →