Modern Ancient Temperatures

By Willis Eschenbach – Re-Blogged From WUWT

OK, no need to torture me, I confess it—I’m a data junkie.

And when I see a new (to me at least) high-resolution dataset, my knees get weak. Case in point? The temperature dataset of the Colle Gnifetti ice core. It has a two-year resolution thanks to some new techniques. Better, it stretches clear back to the year 800. And best, it extends up to near the present, 2006. This lets us compare it to modern datasets. The analysis of the ice core dataset is described in Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium by Pascal Bohleber et al.

Let me start with where Colle Gnifetti is located. Unusual among ice core records, it’s from Europe, specifically in the Alps on the border of Switzerland and Italy.

Figure 1. Location of the ice cores in the study.

Continue reading

Warmer Temperatures Lead to a More Stable Climate

By Anthony Watts – Re-Blogged From

From RESEARCH ORGANIZATION OF INFORMATION AND SYSTEMS and the “goodbye climate disruption” department, comes this study that might very well explain why we have less landfalling U.S. hurricanes, less tornadoes, and extreme weather of all kinds seems to be waning.

Climate instability over the past 720,000 years
Ice core analysis from Dome Fuji, Antarctica and climate simulation

A research group formed by 64 researchers from the National Institute of Polar Research, the University of Tokyo, and other organizations analyzed atmospheric temperatures and dust for the past 720,000 years using an ice core obtained at Dome Fuji in Antarctica. Results indicate that when intermediate temperatures occurred within a glacial period, the climate was highly unstable and fluctuated. A climate simulation was also performed based on the Coupled Atmosphere-Ocean General Circulation Model, which revealed that the major cause of the observed climate instability was global cooling by a decline in the greenhouse effect.

Continue reading