2016 Global Surface Temperatures

By Bob Tisdale – Re-Blogged From http://www.WattsUpWithThat.com

Figure 1 presents two model-data comparisons for global sea surface temperatures, not anomalies, for the past 30-years. I’ve included a comparison for the global oceans (90S-90N) in the top graph and a comparison for the global oceans, excluding the polar oceans (60S-60N), in the bottom graph. Excluding the polar oceans doesn’t seem to make a significant difference. It’s obvious that global sea surfaces simulated by the GISS climate model were warmer than observed and that the GISS model warming rate is too high over the past 3 decades. The difference between modeled and observed warming rates is approximately 0.07 to 0.08 deg C/decade, more than 60% higher than the observed rate. And in both cases the 30-year average sea surface temperature as simulated by the GISS models is too high by about 0.6 deg C.

figure-1

Figure 1 – Global Oceans

TIME SERIES – TROPICAL AND EXTRATROPICAL SEA SURFACE TEMPERATURES

In June of 2013, Roy Spencer presented model-data comparisons of the warming of the tropical mid-troposphere prepared by John Christy. See Roy’s posts EPIC FAIL: 73 Climate Models vs. Observations for Tropical Tropospheric Temperature and STILL Epic Fail: 73 Climate Models vs. Measurements, Running 5-Year Means. The models grossly overestimated the warming rates of the mid-troposphere in the tropics. So I thought it would be worthwhile, since the tropical oceans (24S-24N) cover 76% of the tropics and about 46% of the global oceans, to confirm that the models also grossly overestimate the warming of sea surface temperatures of the tropical oceans.

It should come as no surprise that the models did overestimate the warming of the sea surface temperatures of the tropical oceans over the past 30 years. See Figure 2. In fact, the models overestimated the warming by a wide margin. The data indicate the sea surface temperatures of the tropical oceans warmed at a not-very-alarming rate of 0.11 deg C/decade, while the models indicate that, if the surfaces of the tropical oceans were warmed by manmade greenhouse gases, they should have warmed at almost 2 times that rate, at 0.22 deg C/decade. For 46% of the surface of the global oceans (about 33% of the surface of the planet), the models doubled the observed warming rate.

figure-2Figure 2 – Tropical Oceans

And of course, for the tropical oceans, the model-simulated ocean surface temperatures are too warm by about 0.9 deg C.

For the extratropical oceans of the Southern Hemisphere (90S-24S), Figure 3, the observed warming rate is also extremely low at 0.06 deg C/decade. On the other hand, the climate models indicate that if manmade greenhouse gases were responsible for the warming of sea surface temperatures in this region, the oceans should have warmed at a rate of 0.14 deg C/decade, more than doubling that observed trend. The extratropical oceans of the Southern Hemisphere cover about 33% of the surface of the global oceans (about 23% of the surface of the planet) and the models double the rate of warming.

figure-3

Figure 3 – Extratropical Southern Hemisphere

The models are too warm in the extratropical oceans of the Southern Hemisphere, by roughly 0.6 deg C.

And the climate models seem to get the warming rate of sea surface temperatures just right for the smallest portion of the global oceans, the extratropical Northern Hemisphere (24N-90N). See Figure 4. The extratropical oceans of the Northern Hemisphere cover only about 21% of the surface of the global oceans (about 15% of the surface of the Earth).

figure-4

Figure 4 – Extratropical Northern Hemisphere

Curiously, the model-simulated surface temperatures are too cool in the extratropical oceans of the Northern Hemisphere. That won’t help their simulations of sea ice.

TIME SERIES – OCEAN BASINS

Figures 5 to 11 provide comparisons of modeled and observed sea surface temperatures for the individual ocean basins…without commentary. I’d take the comparisons of the Arctic and Southern Oceans (Figures 10 and 11) with a grain of salt…because the models and data may account for sea ice differently.

figure-5

Figure 5 – North Atlantic

# # #

figure-6

Figure 6 – South Atlantic

# # #

Another paper for the Copenhagen train. This is an estimate according to the abstract. Here’s the abstract and the supplemental information, of course the publicly funded paper is behind the AAAS paywall.

From UCLA News: Last time carbon dioxide levels were this high: 15 million years ago, scientists report

By Stuart Wolpert October 08, 2009 Category: Research

You would have to go back at least 15 million years to find carbon dioxide levels on Earth as high as they are today, a UCLA scientist and colleagues report Oct. 8 in the online edition of the journal Science.
“The last time carbon dioxide levels were apparently as high as they are today — and were sustained at those levels — global temperatures were 5 to 10 degrees Fahrenheit higher than they are today, the sea level was approximately 75 to 120 feet higher than today, there was no permanent sea ice cap in the Arctic and very little ice on Antarctica and Greenland,” said the paper’s lead author, Aradhna Tripati, a UCLA assistant professor in the department of Earth and space sciences and the department of atmospheric and oceanic sciences.
“Carbon dioxide is a potent greenhouse gas, and geological observations that we now have for the last 20 million years lend strong support to the idea that carbon dioxide is an important agent for driving climate change throughout Earth’s history,” she said.
By analyzing the chemistry of bubbles of ancient air trapped in Antarctic ice, scientists have been able to determine the composition of Earth’s atmosphere going back as far as 800,000 years, and they have developed a good understanding of how carbon dioxide levels have varied in the atmosphere since that time. But there has been little agreement before this study on how to reconstruct carbon dioxide levels prior to 800,000 years ago.
Tripati, before joining UCLA’s faculty, was part of a research team at England’s University of Cambridge that developed a new technique to assess carbon dioxide levels in the much more distant past — by studying the ratio of the chemical element boron to calcium in the shells of ancient single-celled marine algae. Tripati has now used this method to determine the amount of carbon dioxide in Earth’s atmosphere as far back as 20 million years ago.
"Aradhna

Aradhna Tripati
“We are able, for the first time, to accurately reproduce the ice-core record for the last 800,000 years — the record of atmospheric C02 based on measurements of carbon dioxide in gas bubbles in ice,” Tripati said. “This suggests that the technique we are using is valid.
“We then applied this technique to study the history of carbon dioxide from 800,000 years ago to 20 million years ago,” she said. “We report evidence for a very close coupling between carbon dioxide levels and climate. When there is evidence for the growth of a large ice sheet on Antarctica or on Greenland or the growth of sea ice in the Arctic Ocean, we see evidence for a dramatic change in carbon dioxide levels over the last 20 million years.
“A slightly shocking finding,” Tripati said, “is that the only time in the last 20 million years that we find evidence for carbon dioxide levels similar to the modern level of 387 parts per million was 15 to 20 million years ago, when the planet was dramatically different.”
Levels of carbon dioxide have varied only between 180 and 300 parts per million over the last 800,000 years — until recent decades, said Tripati, who is also a member of UCLA’s Institute of Geophysics and Planetary Physics. It has been known that modern-day levels of carbon dioxide are unprecedented over the last 800,000 years, but the finding that modern levels have not been reached in the last 15 million years is new.
Prior to the Industrial Revolution of the late 19th and early 20th centuries, the carbon dioxide level was about 280 parts per million, Tripati said. That figure had changed very little over the previous 1,000 years. But since the Industrial Revolution, the carbon dioxide level has been rising and is likely to soar unless action is taken to reverse the trend, Tripati said.
“During the Middle Miocene (the time period approximately 14 to 20 million years ago), carbon dioxide levels were sustained at about 400 parts per million, which is about where we are today,” Tripati said. “Globally, temperatures were 5 to 10 degrees Fahrenheit warmer, a huge amount.”
Tripati’s new chemical technique has an average uncertainty rate of only 14 parts per million.
“We can now have confidence in making statements about how carbon dioxide has varied throughout history,” Tripati said.
In the last 20 million years, key features of the climate record include the sudden appearance of ice on Antarctica about 14 million years ago and a rise in sea level of approximately 75 to 120 feet.
“We have shown that this dramatic rise in sea level is associated with an increase in carbon dioxide levels of about 100 parts per million, a huge change,” Tripati said. “This record is the first evidence that carbon dioxide may be linked with environmental changes, such as changes in the terrestrial ecosystem, distribution of ice, sea level and monsoon intensity.”
Today, the Arctic Ocean is covered with frozen ice all year long, an ice cap that has been there for about 14 million years.
“Prior to that, there was no permanent sea ice cap in the Arctic,” Tripati said.
Some projections show carbon dioxide levels rising as high as 600 or even 900 parts per million in the next century if no action is taken to reduce carbon dioxide, Tripati said. Such levels may have been reached on Earth 50 million years ago or earlier, said Tripati, who is working to push her data back much farther than 20 million years and to study the last 20 million years in detail.
More than 50 million years ago, there were no ice sheets on Earth, and there were expanded deserts in the subtropics, Tripati noted. The planet was radically different.
Co-authors on the Science paper are Christopher Roberts, a Ph.D. student in the department of Earth sciences at the University of Cambridge, and Robert Eagle, a postdoctoral scholar in the division of geological and planetary sciences at the California Institute of Technology.
The research was funded by UCLA’s Division of Physical Sciences and the United Kingdom’s National Environmental Research Council.
Tripati’s research focuses on the development and application of chemical tools to study climate change throughout history. She studies the evolution of climate and seawater chemistry through time.
“I’m interested in understanding how the carbon cycle and climate have been coupled, and why they have been coupled, over a range of time-scales, from hundreds of years to tens of millions of years,” Tripati said.
In addition to being published on the Science Express website, the paper will be published in the print edition of Science at a later date.
UPDATE: Bill Illis add this graph in comments, which brings up the obvious correlation questions.
""

” data-medium-file=”” data-large-file=”” class=”aligncenter size-full wp-image-11608″ src=”https://bobtisdale.files.wordpress.com/2017/01/figure-7.png” alt=”figure-7″ scale=”0″>

Figure 7 – North Pacific

# # #

figure-8By Stuart Wolpert October 08, 2009 Category: Research

Aradhna Tripati

Aradhna Tripati

<p>// </p></div>

You would have to go back at least 15 million years to find carbon dioxide levels on Earth as high as they are today, a UCLA scientist and colleagues report Oct. 8 in the online edition of the journal Science.
“The last time carbon dioxide levels were apparently as high as they are today — and were sustained at those levels — global temperatures were 5 to 10 degrees Fahrenheit higher than they are today, the sea level was approximately 75 to 120 feet higher than today, there was no permanent sea ice cap in the Arctic and very little ice on Antarctica and Greenland,” said the paper’s lead author, Aradhna Tripati, a UCLA assistant professor in the department of Earth and space sciences and the department of atmospheric and oceanic sciences.
“Carbon dioxide is a potent greenhouse gas, and geological observations that we now have for the last 20 million years lend strong support to the idea that carbon dioxide is an important agent for driving climate change throughout Earth’s history,” she said.
By analyzing the chemistry of bubbles of ancient air trapped in Antarctic ice, scientists have been able to determine the composition of Earth’s atmosphere going back as far as 800,000 years, and they have developed a good understanding of how carbon dioxide levels have varied in the atmosphere since that time. But there has been little agreement before this study on how to reconstruct carbon dioxide levels prior to 800,000 years ago.
Tripati, before joining UCLA’s faculty, was part of a research team at England’s University of Cambridge that developed a new technique to assess carbon dioxide levels in the much more distant past — by studying the ratio of the chemical element boron to calcium in the shells of ancient single-celled marine algae. Tripati has now used this method to determine the amount of carbon dioxide in Earth’s atmosphere as far back as 20 million years ago.
“We are able, for the first time, to accurately reproduce the ice-core record for the last 800,000 years — the record of atmospheric C02 based on measurements of carbon dioxide in gas bubbles in ice,” Tripati said. “This suggests that the technique we are using is valid.
“We then applied this technique to study the history of carbon dioxide from 800,000 years ago to 20 million years ago,” she said. “We report evidence for a very close coupling between carbon dioxide levels and climate. When there is evidence for the growth of a large ice sheet on Antarctica or on Greenland or the growth of sea ice in the Arctic Ocean, we see evidence for a dramatic change in carbon dioxide levels over the last 20 million years.
“A slightly shocking finding,” Tripati said, “is that the only time in the last 20 million years that we find evidence for carbon dioxide levels similar to the modern level of 387 parts per million was 15 to 20 million years ago, when the planet was dramatically different.”
Levels of carbon dioxide have varied only between 180 and 300 parts per million over the last 800,000 years — until recent decades, said Tripati, who is also a member of UCLA’s Institute of Geophysics and Planetary Physics. It has been known that modern-day levels of carbon dioxide are unprecedented over the last 800,000 years, but the finding that modern levels have not been reached in the last 15 million years is new.
Prior to the Industrial Revolution of the late 19th and early 20th centuries, the carbon dioxide level was about 280 parts per million, Tripati said. That figure had changed very little over the previous 1,000 years. But since the Industrial Revolution, the carbon dioxide level has been rising and is likely to soar unless action is taken to reverse the trend, Tripati said.
“During the Middle Miocene (the time period approximately 14 to 20 million years ago), carbon dioxide levels were sustained at about 400 parts per million, which is about where we are today,” Tripati said. “Globally, temperatures were 5 to 10 degrees Fahrenheit warmer, a huge amount.”
Tripati’s new chemical technique has an average uncertainty rate of only 14 parts per million.
“We can now have confidence in making statements about how carbon dioxide has varied throughout history,” Tripati said.
In the last 20 million years, key features of the climate record include the sudden appearance of ice on Antarctica about 14 million years ago and a rise in sea level of approximately 75 to 120 feet.
“We have shown that this dramatic rise in sea level is associated with an increase in carbon dioxide levels of about 100 parts per million, a huge change,” Tripati said. “This record is the first evidence that carbon dioxide may be linked with environmental changes, such as changes in the terrestrial ecosystem, distribution of ice, sea level and monsoon intensity.”
Today, the Arctic Ocean is covered with frozen ice all year long, an ice cap that has been there for about 14 million years.
“Prior to that, there was no permanent sea ice cap in the Arctic,” Tripati said.
Some projections show carbon dioxide levels rising as high as 600 or even 900 parts per million in the next century if no action is taken to reduce carbon dioxide, Tripati said. Such levels may have been reached on Earth 50 million years ago or earlier, said Tripati, who is working to push her data back much farther than 20 million years and to study the last 20 million years in detail.
More than 50 million years ago, there were no ice sheets on Earth, and there were expanded deserts in the subtropics, Tripati noted. The planet was radically different.
Co-authors on the Science paper are Christopher Roberts, a Ph.D. student in the department of Earth sciences at the University of Cambridge, and Robert Eagle, a postdoctoral scholar in the division of geological and planetary sciences at the California Institute of Technology.
The research was funded by UCLA’s Division of Physical Sciences and the United Kingdom’s National Environmental Research Council.
Tripati’s research focuses on the development and application of chemical tools to study climate change throughout history. She studies the evolution of climate and seawater chemistry through time.
“I’m interested in understanding how the carbon cycle and climate have been coupled, and why they have been coupled, over a range of time-scales, from hundreds of years to tens of millions of years,” Tripati said.
In addition to being published on the Science Express website, the paper will be published in the print edition of Science at a later date.

” data-medium-file=”” data-large-file=”” />

Figure 8 – South Pacific

# # #

figure-9

Figure 9 – Indian

# # #

Another paper for the Copenhagen train. This is an estimate according to the abstract. Here’s the abstract and the supplemental information, of course the publicly funded paper is behind the AAAS paywall.

From UCLA News: Last time carbon dioxide levels were this high: 15 million years ago, scientists report

By Stuart Wolpert October 08, 2009 Category: Research

You would have to go back at least 15 million years to find carbon dioxide levels on Earth as high as they are today, a UCLA scientist and colleagues report Oct. 8 in the online edition of the journal Science.
“The last time carbon dioxide levels were apparently as high as they are today — and were sustained at those levels — global temperatures were 5 to 10 degrees Fahrenheit higher than they are today, the sea level was approximately 75 to 120 feet higher than today, there was no permanent sea ice cap in the Arctic and very little ice on Antarctica and Greenland,” said the paper’s lead author, Aradhna Tripati, a UCLA assistant professor in the department of Earth and space sciences and the department of atmospheric and oceanic sciences.
“Carbon dioxide is a potent greenhouse gas, and geological observations that we now have for the last 20 million years lend strong support to the idea that carbon dioxide is an important agent for driving climate change throughout Earth’s history,” she said.
By analyzing the chemistry of bubbles of ancient air trapped in Antarctic ice, scientists have been able to determine the composition of Earth’s atmosphere going back as far as 800,000 years, and they have developed a good understanding of how carbon dioxide levels have varied in the atmosphere since that time. But there has been little agreement before this study on how to reconstruct carbon dioxide levels prior to 800,000 years ago.
Tripati, before joining UCLA’s faculty, was part of a research team at England’s University of Cambridge that developed a new technique to assess carbon dioxide levels in the much more distant past — by studying the ratio of the chemical element boron to calcium in the shells of ancient single-celled marine algae. Tripati has now used this method to determine the amount of carbon dioxide in Earth’s atmosphere as far back as 20 million years ago.
"Aradhna

Aradhna Tripati
“We are able, for the first time, to accurately reproduce the ice-core record for the last 800,000 years — the record of atmospheric C02 based on measurements of carbon dioxide in gas bubbles in ice,” Tripati said. “This suggests that the technique we are using is valid.
“We then applied this technique to study the history of carbon dioxide from 800,000 years ago to 20 million years ago,” she said. “We report evidence for a very close coupling between carbon dioxide levels and climate. When there is evidence for the growth of a large ice sheet on Antarctica or on Greenland or the growth of sea ice in the Arctic Ocean, we see evidence for a dramatic change in carbon dioxide levels over the last 20 million years.
“A slightly shocking finding,” Tripati said, “is that the only time in the last 20 million years that we find evidence for carbon dioxide levels similar to the modern level of 387 parts per million was 15 to 20 million years ago, when the planet was dramatically different.”
Levels of carbon dioxide have varied only between 180 and 300 parts per million over the last 800,000 years — until recent decades, said Tripati, who is also a member of UCLA’s Institute of Geophysics and Planetary Physics. It has been known that modern-day levels of carbon dioxide are unprecedented over the last 800,000 years, but the finding that modern levels have not been reached in the last 15 million years is new.
Prior to the Industrial Revolution of the late 19th and early 20th centuries, the carbon dioxide level was about 280 parts per million, Tripati said. That figure had changed very little over the previous 1,000 years. But since the Industrial Revolution, the carbon dioxide level has been rising and is likely to soar unless action is taken to reverse the trend, Tripati said.
“During the Middle Miocene (the time period approximately 14 to 20 million years ago), carbon dioxide levels were sustained at about 400 parts per million, which is about where we are today,” Tripati said. “Globally, temperatures were 5 to 10 degrees Fahrenheit warmer, a huge amount.”
Tripati’s new chemical technique has an average uncertainty rate of only 14 parts per million.
“We can now have confidence in making statements about how carbon dioxide has varied throughout history,” Tripati said.
In the last 20 million years, key features of the climate record include the sudden appearance of ice on Antarctica about 14 million years ago and a rise in sea level of approximately 75 to 120 feet.
“We have shown that this dramatic rise in sea level is associated with an increase in carbon dioxide levels of about 100 parts per million, a huge change,” Tripati said. “This record is the first evidence that carbon dioxide may be linked with environmental changes, such as changes in the terrestrial ecosystem, distribution of ice, sea level and monsoon intensity.”
Today, the Arctic Ocean is covered with frozen ice all year long, an ice cap that has been there for about 14 million years.
“Prior to that, there was no permanent sea ice cap in the Arctic,” Tripati said.
Some projections show carbon dioxide levels rising as high as 600 or even 900 parts per million in the next century if no action is taken to reduce carbon dioxide, Tripati said. Such levels may have been reached on Earth 50 million years ago or earlier, said Tripati, who is working to push her data back much farther than 20 million years and to study the last 20 million years in detail.
More than 50 million years ago, there were no ice sheets on Earth, and there were expanded deserts in the subtropics, Tripati noted. The planet was radically different.
Co-authors on the Science paper are Christopher Roberts, a Ph.D. student in the department of Earth sciences at the University of Cambridge, and Robert Eagle, a postdoctoral scholar in the division of geological and planetary sciences at the California Institute of Technology.
The research was funded by UCLA’s Division of Physical Sciences and the United Kingdom’s National Environmental Research Council.
Tripati’s research focuses on the development and application of chemical tools to study climate change throughout history. She studies the evolution of climate and seawater chemistry through time.
“I’m interested in understanding how the carbon cycle and climate have been coupled, and why they have been coupled, over a range of time-scales, from hundreds of years to tens of millions of years,” Tripati said.
In addition to being published on the Science Express website, the paper will be published in the print edition of Science at a later date.

” data-medium-file=”” data-large-file=”” class=”aligncenter size-full wp-image-11611″ src=”https://bobtisdale.files.wordpress.com/2017/01/figure-10.png&#8221; alt=”figure-10″ scale=”0″>

Figure 10 – Arctic

# # #

Another paper for the Copenhagen train. This is an estimate according to the abstract. Here’s the abstract and the supplemental information, of course the publicly funded paper is behind the AAAS paywall.

From UCLA News: Last time carbon dioxide levels were this high: 15 million years ago, scientists report

By Stuart Wolpert October 08, 2009 Category: Research

You would have to go back at least 15 million years to find carbon dioxide levels on Earth as high as they are today, a UCLA scientist and colleagues report Oct. 8 in the online edition of the journal Science.
“The last time carbon dioxide levels were apparently as high as they are today — and were sustained at those levels — global temperatures were 5 to 10 degrees Fahrenheit higher than they are today, the sea level was approximately 75 to 120 feet higher than today, there was no permanent sea ice cap in the Arctic and very little ice on Antarctica and Greenland,” said the paper’s lead author, Aradhna Tripati, a UCLA assistant professor in the department of Earth and space sciences and the department of atmospheric and oceanic sciences.
“Carbon dioxide is a potent greenhouse gas, and geological observations that we now have for the last 20 million years lend strong support to the idea that carbon dioxide is an important agent for driving climate change throughout Earth’s history,” she said.
By analyzing the chemistry of bubbles of ancient air trapped in Antarctic ice, scientists have been able to determine the composition of Earth’s atmosphere going back as far as 800,000 years, and they have developed a good understanding of how carbon dioxide levels have varied in the atmosphere since that time. But there has been little agreement before this study on how to reconstruct carbon dioxide levels prior to 800,000 years ago.
Tripati, before joining UCLA’s faculty, was part of a research team at England’s University of Cambridge that developed a new technique to assess carbon dioxide levels in the much more distant past — by studying the ratio of the chemical element boron to calcium in the shells of ancient single-celled marine algae. Tripati has now used this method to determine the amount of carbon dioxide in Earth’s atmosphere as far back as 20 million years ago.
"Aradhna

Aradhna Tripati
“We are able, for the first time, to accurately reproduce the ice-core record for the last 800,000 years — the record of atmospheric C02 based on measurements of carbon dioxide in gas bubbles in ice,” Tripati said. “This suggests that the technique we are using is valid.
“We then applied this technique to study the history of carbon dioxide from 800,000 years ago to 20 million years ago,” she said. “We report evidence for a very close coupling between carbon dioxide levels and climate. When there is evidence for the growth of a large ice sheet on Antarctica or on Greenland or the growth of sea ice in the Arctic Ocean, we see evidence for a dramatic change in carbon dioxide levels over the last 20 million years.
“A slightly shocking finding,” Tripati said, “is that the only time in the last 20 million years that we find evidence for carbon dioxide levels similar to the modern level of 387 parts per million was 15 to 20 million years ago, when the planet was dramatically different.”
Levels of carbon dioxide have varied only between 180 and 300 parts per million over the last 800,000 years — until recent decades, said Tripati, who is also a member of UCLA’s Institute of Geophysics and Planetary Physics. It has been known that modern-day levels of carbon dioxide are unprecedented over the last 800,000 years, but the finding that modern levels have not been reached in the last 15 million years is new.
Prior to the Industrial Revolution of the late 19th and early 20th centuries, the carbon dioxide level was about 280 parts per million, Tripati said. That figure had changed very little over the previous 1,000 years. But since the Industrial Revolution, the carbon dioxide level has been rising and is likely to soar unless action is taken to reverse the trend, Tripati said.
“During the Middle Miocene (the time period approximately 14 to 20 million years ago), carbon dioxide levels were sustained at about 400 parts per million, which is about where we are today,” Tripati said. “Globally, temperatures were 5 to 10 degrees Fahrenheit warmer, a huge amount.”
Tripati’s new chemical technique has an average uncertainty rate of only 14 parts per million.
“We can now have confidence in making statements about how carbon dioxide has varied throughout history,” Tripati said.
In the last 20 million years, key features of the climate record include the sudden appearance of ice on Antarctica about 14 million years ago and a rise in sea level of approximately 75 to 120 feet.
“We have shown that this dramatic rise in sea level is associated with an increase in carbon dioxide levels of about 100 parts per million, a huge change,” Tripati said. “This record is the first evidence that carbon dioxide may be linked with environmental changes, such as changes in the terrestrial ecosystem, distribution of ice, sea level and monsoon intensity.”
Today, the Arctic Ocean is covered with frozen ice all year long, an ice cap that has been there for about 14 million years.
“Prior to that, there was no permanent sea ice cap in the Arctic,” Tripati said.
Some projections show carbon dioxide levels rising as high as 600 or even 900 parts per million in the next century if no action is taken to reduce carbon dioxide, Tripati said. Such levels may have been reached on Earth 50 million years ago or earlier, said Tripati, who is working to push her data back much farther than 20 million years and to study the last 20 million years in detail.
More than 50 million years ago, there were no ice sheets on Earth, and there were expanded deserts in the subtropics, Tripati noted. The planet was radically different.
Co-authors on the Science paper are Christopher Roberts, a Ph.D. student in the department of Earth sciences at the University of Cambridge, and Robert Eagle, a postdoctoral scholar in the division of geological and planetary sciences at the California Institute of Technology.
The research was funded by UCLA’s Division of Physical Sciences and the United Kingdom’s National Environmental Research Council.
Tripati’s research focuses on the development and application of chemical tools to study climate change throughout history. She studies the evolution of climate and seawater chemistry through time.
“I’m interested in understanding how the carbon cycle and climate have been coupled, and why they have been coupled, over a range of time-scales, from hundreds of years to tens of millions of years,” Tripati said.
In addition to being published on the Science Express website, the paper will be published in the print edition of Science at a later date.

” data-medium-file=”” data-large-file=”” class=”aligncenter size-full wp-image-11612″ src=”https://bobtisdale.files.wordpress.com/2017/01/figure-111.png&#8221; alt=”figure-11″ scale=”0″>

Figure 11 – Southern

CLOSING

It would be nice to know what planet the climate models from GISS are simulating. It certainly isn’t the Earth.

We live on an ocean-covered planet, yet somehow the whens, there wheres, and the extents of the warming of the surfaces of our oceans seem to have eluded the climate modelers at GISS. In this post, we presented sea surface temperatures, not anomalies, for the past 3 decades and this has pointed to other climate model failings, which further suggest that simulations of basic ocean circulation processes in the models are flawed.

Depending on the ocean basin, there are large differences between the modeled and observed ocean surface temperatures. The actual ocean surface temperatures, along with numerous other factors, dictate how much moisture is evaporated from the ocean surfaces, and, in turn, how much moisture there is in the atmosphere…which impacts the moisture available (1) for precipitation, (2) for water vapor-related greenhouse effect, and (3) for the negative feedbacks from cloud cover. In other words, failing to properly simulate sea surface temperatures impacts the atmospheric component of the fatally flawed coupled ocean-atmosphere models from GISS.

PLUG FOR A FREE EBOOK

I believe it’s been a while since I’ve promoted my most recent free ebook on global warming and climate change. On Global Warming and the Illusion of Control – Part 1 presents the basics and the illusions behind global warming and climate change. (Click here for a copy. 700+ Page, 25MB .pdf) Happy reading.

CONTINUE READING –>

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s